The gnyRDBHAL cluster is involved in acyclic isoprenoid degradation in Pseudomonas aeruginosa.
نویسندگان
چکیده
Pseudomonas aeruginosa PAO1 mutants affected in the ability to degrade acyclic isoprenoids were isolated with transposon mutagenesis. The gny cluster (for geranoyl), which encodes the enzymes involved in the lower pathway of acyclic isoprenoid degradation, was identified. The gny cluster is constituted by five probable structural genes, gnyDBHAL, and a possible regulatory gene, gnyR. Mutations in the gnyD, gnyB, gnyA, or gnyL gene caused inability to assimilate acyclic isoprenoids of the citronellol family of compounds. Transcriptional analysis showed that expression of the gnyB gene was induced by citronellol and repressed by glucose, whereas expression of the gnyR gene had the opposite behavior. Western blot analysis of citronellol-grown cultures showed induction of biotinylated proteins of 70 and 73 kDa, which probably correspond to 3-methylcrotonoyl-coenzyme A (CoA) carboxylase and geranoyl-CoA carboxylase (GCCase) alpha subunits, respectively. The 73-kDa biotinylated protein, identified as the alpha-GCCase subunit, is encoded by gnyA. Intermediary metabolites of the isoprenoid pathway, citronellic and geranic acids, were shown to accumulate in gnyB and gnyA mutants. Our data suggest that the protein products encoded in the gny cluster are the beta and alpha subunits of geranoyl-CoA carboxylase (GnyB and GnyA), the citronelloyl-CoA dehydrogenase (GnyD), the gamma-carboxygeranoyl-CoA hydratase (GnyH), and the 3-hydroxy-gamma-carboxygeranoyl-CoA lyase (GnyL). We conclude that the gnyRDBHAL cluster is involved in isoprenoid catabolism.
منابع مشابه
The atu and liu clusters are involved in the catabolic pathways for acyclic monoterpenes and leucine in Pseudomonas aeruginosa.
Evidence suggests that the Pseudomonas aeruginosa PAO1 gnyRDBHAL cluster, which is involved in acyclic isoprenoid degradation (A. L. Díaz-Pérez, N. A. Zavala-Hernández, C. Cervantes, and J. Campos-García, Appl. Environ. Microbiol. 70:5102-5110, 2004), corresponds to the liuRABCDE cluster (B. Hoschle, V. Gnau, and D. Jendrossek, Microbiology 151:3649-3656, 2005). A liu (leucine and isovalerate u...
متن کاملPurification and Characterization of Alginate Lyase from Mucoid Pseudomonas aeruginosa Strain 214
Pseudomonas aeruginosa is an opportunistic pathogen that causes a variety of infections in compromised patients. The ability of Pseudomonas aeruginosa to produce chronic infection is based in part on its ability to biosynthesis of biofilm, and alginate is the major polysaccharide in the synthesized biofilm. So alginate degradation is very essential in the dispersion of Pseudomonas aeruginosa bi...
متن کاملOptimal conditions for enhancing sodium dodecyl sulfate biodegradation by Pseudomonas aeruginosa KGS
The anionic surfactant sodium dodecyl sulfate (SDS) was degraded by novel strain ofPseudomonas aeruginosa KGS under accession No. JQ328193, which was isolated from carwash wastewater. The purpose of this research was to study different optimization conditionsrequired for enhancing the biodegradation of sodium dodecyl sulfate P. aeruginosa KGS.Influence of different Physicochemical factors such ...
متن کاملOne-step purification and characterization of alginate lyase from a clinical Pseudomonas aeruginosa with destructive activity on bacterial biofilm
Objective(s): Pseudomonas aeruginosais a Gram-negative and aerobic rod bacterium that displays mucoid and non-mucoid phenotype. Mucoid strains secrete alginate, which is the main agent of biofilms in chronic P. aeruginosa infections, show high resistance to antibiotics; consequently, the biological disruption of mucoid P. aeruginosa biofilms is an attractive area of study for researchers. Algin...
متن کاملRole of orFD Pseudomonas aeruginosa H103 Gene in Glucose Uptake
Background:Pseudomonas aeruginosa is a gram negative non facultative bacterium and one of the members of normal flora in different sites of body in healthy humans.this bacterium can resist in fluids and hospital environments for a long time.Pseudomonas aeruginosa has two systems for glucose uptake:a low affinity oxidative pathway and a high affinity phosohorylative pathway.Although the role of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 70 9 شماره
صفحات -
تاریخ انتشار 2004